Field classification, modeling and anomaly detection in unknown CAN bus networks
نویسندگان
چکیده
This paper describes a novel domain-aware anomaly detection system for in-car CAN bus network traffic. Through inspection of real CAN bus communication, we were able to split the messages into fields and identify the field types, without any prior knowledge of the message formats. We discovered the presence of Constant fields, Multi-Value fields and Counter or Sensor fields. Next we developed a classifier that automatically identifies the boundaries and types of these fields. In its learning phase, our anomaly detection system uses the classifier to characterize the fields and build a model for the messages, based on their field types. The model is based on Ternary Content-Addressable Memory (TCAM), that can run efficiently in either software or hardware. During the enforcement phase our system detects deviations from the model. We evaluated our system on simulated CAN bus traffic, and achieved very encouraging results: a median false positive rate of 1% with a median of only 89.5 TCAMs.
منابع مشابه
A Survey of Anomaly Detection Approaches in Internet of Things
Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...
متن کاملIntrusion Detection in IOT based Networks Using Double Discriminant Analysis
Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...
متن کاملSNMiner: A Rapid Evaluator of Anomaly Detection Accuracy in Sensor Networks
Modeling faults and malicious activities in sensor networks can be challenging. Designing and re-evaluating a “good” classifier to detect abnormalities imposes yet another challenge once the sensor network is deployed in the field. Common approaches among researchers involve obtaining publicly accessible labeled datasets, generating synthetic sensor data, or collecting sensor readings from a re...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vehicular Communications
دوره 9 شماره
صفحات -
تاریخ انتشار 2017